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' ABSTRACT

l SYNTHESIS METHODS APPLICABLE TO SEM

\ POLE-PAIR ADMITTANCES

The applicability of the first layer conjugate pole pair at a time equiv-
alent circuit synthesis for energy collecting structures is considered. It
is found that, at least for some highly resonant structures, the whole eigen-

set of poles can be approximately represented by the first layer dominant

pole. The driving point admittance function can then be synthesized in the
form of a parallel connection of simple pole-pair modules. The biquadratic
functions corresponding to each conjugate pole pair are, in general, not pos-

~
resistive padding approximate realization is possible. The padded function

i itive real and thus physically realizable. It is found that after negligible
| is a minimum biquadratic - the real part of it is zero at some frequency W .
, If w, = 0 or w, = o, the function can be easily realized by continued fraction
expansion. If however wo is finite, it is shown, tﬁét the only transformer-
‘ less configuration derivable is the Bott-Duffin networif*JThe explicit form
of this network, as well as Brune and Dﬂglington network, is derived. It is
demonstrated that the Darlington network reduces to Brune network or, if
surplus factors are used, to Bott-Duffin network. The Miyata procedure is
not applicable to minimum biquadratics.

!

After further approximation the Bott-Duffin network can be reduced to

simple four element structure which has been shown to give favorable results

for the thin wire dipole and loop antennas.
' It is demonstrated that the equivalent networks derived are very sensi-

tive to changes in element values. This and the influence of the parasitic

- ' effects associated with real circuit elements can unfavorably affect the

<

1 ‘ - -iii- |

practicability of the derived networks, should they be constructed.‘

e e amr—aa .




TABLE OF CONTENTS

POSITIVE REAL FUNCTIONS AND BASIC CONCEPTS ¢ « o & o«

SYNTHESIS OF BIQUADRATIC FUNCTIONS ‘- PRELIMINARY . . .

Section
I. INTRODUCTION . o ¢ o ¢ o o o o+ &«
1I.
III.
IV. SYNTHESIS OF MINIMUM BIQUADRATIC
METHODS o ¢ o o ¢ o ¢ o o o o =
Brune Methed . ., . . . . .
Bott-Duffin Method . . . .
Darlington Method . . . . .
Miyata Procedure . . . . .
V. PRACTICAL MATTERS . . o « o o
Capacitive Adjustment . . .
Parasitic Effects . « . . .
Network Sensitivity . . . .
VI. CONCLUSIONS &« 4 o o ¢ o o o o
VII. APPENDIX - - L] - - - » - - * - L]

REFERENCES . « ¢ o o o o o ¢ o o « o o

FUNCTIONS - GENERAL

Accession For

NTIS GRAXI
DDC TAB
Unarnounceq
Justification

Page

10

13

37
38
40
67
84
89
89
89
92
97

99

111

By

Listribution

Avni}gpilipx“Co ]

!Avai’
and/or
Dist special




LIST OF FIGURES

Figure
1. Natural frequencies of the straight wire with L/d = 100. (Only
Type I and Type II poles [45] are shown.) . . . . . . . . . . .
2. Natural frequencies of the circular loop, with 8 =15 . . . . .
3. Real part characteristics of three classes of PR biquadratic
FUNCtionNS & v v v & 4 4 4 e 4 b e s b s e e e e e e e e e e e
4. (a) Real part characteristic of an unmodified pole-pair module
for the dipole antenna, and (b) fragment of (a) . . . . . . . .
5. Explicit ladder networks for the admittance function (11)
(zero at infinity). . &« ¢ ¢« ¢ 4 6 4 bt 4t e e e e e e e s e e
6. Explicit ladder networks for the impedance function (11)
(zero at infinity). . &« & ¢ ¢ 4t 4 b b b e e e e e e s e e e
7. Explicit ladder networks for the admittance function (13)
(ZEXro at ZeYO) & ¢ v ¢ ¢ 4 4 b v 4 s e e e e e e e e e
8. Explicit ladder networks for the impedance function (13)
(zero at 2eYO0) & v & o 4 v 4 v o+ s e o o s 4 e e s s e e e e .
9. Ladder networks for the case B=0 . . . . ¢ ¢ ¢« ¢ & o o o o« &
10. Five-element bridge networksS . . . . ¢« ¢ v ¢ o o s s o o « o =
11. Approximate equivalent network for dipole antenna . . . . . . .
12. Gaussian pulse used in transient analyses . . . ¢« « « « « + . .
13. Transient response of the lumped circuit (Figure 1l) and the
result of the TWID program analysSis . « « « v ¢« ¢« ¢ o « o o« « &
14. Equivalent network for the dipole antenna resulting from the
approximateion (41) « . . ¢ ¢« v ¢« ¢ 4 4 b e e e s e s e e . .
15. Transient response of the lumped circuit (Figure 14) and the
result of the TWID program analySiS . . « « « ¢« ¢ o o o s & o« &
16. Brune network for biquadratic . . . . . . . .« . < o . . . ..
17. Brune network for biquadratic - final form . . . . . . . . . .
18. Brune equivalent network for dipole antenna . . . . . . . . . .
19. Transient response of the lumped circuit (Figure 18) and the

result of TWID program analysis . . . . . « ¢« + ¢« v ¢« v v « &+ &

-yi-

Page

17

20

21

22

23

24

26

29

31

32

33

35

36

41

41

42

43




Figure
20, Illustration of the Bott-Duffin method: network corresponding

to @ge (60) v o « o o o 2 o o = o o o o o o o6 s o 6 0 s o o v o
21, Bott-Duffin network for the Case A . . o« o ¢ « o ¢ o o o » ¢ o &
22, Bott-Duffin network for the Case B . . « o o « o ¢ o o « « o o &
23. Illustration of the T-delta transformation . . ¢« ¢« ¢« « « o o o+ &
24, T-delta transformation used to simplify the Bott-Duffin networks.
25, Modified Bott~Duffin networks for the Case A . o + o « « = o o &
26, Modified Bott-Duffin networks for the Case B . . . ¢« ¢« & o = « &
27. Real part characteristic of a modified pole-pair module

typical for the dipole and 1loop antennas . « « o « o o o o » o« o
28, Real part characteristic of a pole-pair module for a

hypothetical structure . « « « « ¢ o o s o s o o « s o o s o o« »
29. Simplified Bott-Duffin networks for the Cases A (a) and B (b) . .
30. simplified Bott-Duffin equivalent network for the dipole

ANEENNA « & o o o o o o s o « o o = o o o o o s o o o o o = o o o
31. Transient response of the lumped circuit (Figure 30) and the

result of TWTID program analySiS « « « « o o = o o o s o s o o« « =
31A. Simplified Bott-Duffin equivalent network for the loop antenna .
31B. Transient response of the lumped circuit (Figure 31A) and

the result of the TWTD program analysisS « « « o « o o« o « o « « &
32, 1Illustration of the Darlington procedure . « « o« o« ¢ o o s o o &
33. Cauer realization: component two-port for a compact pole . . . .
34, Cauer realization for biquadratiC . ¢« + « « ¢ ¢ ¢« o o o o o o o «
35, Perfect transformer and its equivalent . . & ¢ ¢ ¢ o« ¢ o o « o «
36. Darlington network for biguadratic . . &« ¢ o ¢ o o ¢ o o « o o @
37. Darlington procedure: realization of Zl(s) =Case A . 4 4 4 o o
38. Darlington procedure: realization of Zl(s) ~Case B . ¢ ¢ ¢ o @
39, Darlington procedure: network equivalent to network given in

Figure 38 ., . 4o o ¢ o ¢ ¢ @ o « o o« o « o« = s s s s s s s o o o o

-vii-

Page

45
48
52
54
54
56

58

60

60

62

63

64

65

66
68
68
72
73
74
78

80

81




Figure Page
40, Darlington procedure: realization of Zz(s) -—Case A . . . « « « « 82

41. Darlington procedure: hetwork equivalent to network shown in
Figure 40 L] L] L3 L] Ll Ll . L] . - L L] L] L * L3 - * - L] - . » . . A . o L] 83

42, Darlington procedure: realization of Zz(s) -Case B .. ... .. 85
43, Final form of Darlington networks for Cases A (a) and B (b) « . . . B6
44, Early time response of the equivalent network for the dipole

antenna (Figure 30). (a) Without correcticn, and (b) with

TOPF shunt caApPacCitOr =« o o o o o o o o o ¢ ¢ o o o s o o o« + o « « 90
45. Equivalent network for a real inductor . . « ¢ « ¢ s o o ¢ ¢ o o« « 93

46. The influence of the parasitic effects: C = 1IpF .« ¢ ¢ ¢ ¢ « « o« o« 94

47. The influence of the parasitic effects: C = 2pF . . ¢« ¢« &« ¢« « = « 95

camki o il .




LIST OF TABLES

Table

l. First layer poles and residues for center-fed cylindrical
antenna with L/@=100 . . . + ¢ v v ¢ ¢ 2 4 « o o« o o o o o «

2. First layer poles and residues of loop wire antenna with Q=15
3. Test values for the first layer poles given in Table 1 . . . .

4. Minimum real part frequencies and necessary padding for
pole-pair modules of dipole antenna . . . . . « & ¢ & &+ « o« &

Page

16

25




4 AR s e et be

Section I

INTRODUCTION

The need for finite, lumped equivalent networks valid over a significant
bandwidth in the analysis and design of antennas and scatterers has been
widely recognized for a long time. Such networks may be useful, for example,
in experiments designed to test the terminal circuits intended to operate
with an antenna, before the antenna is actually constructed [35]. Also,
existing circuit analysis programs can be used to calculate the frequency and/
or time response of the structure under consideration.

The Singularity Expansion Method (SEM) is a powerful and convenient
means of constructing equivalent networks for antennas and scatterers [4,5,
29,30,39]. From the SEM data the input admittance1 of a single-port struc-

ture can be expressed as
Y(s) = E Yn(s) 1)

where in' the terminal eigenadmittances, are given by

> ani ~ent ~bi
Y (s) =L ———mM— + Y (s) + Y " (s) (2)
n is-sni n n

where n indexes over the eigenmode sets of poles, the index i distinguishes
among the poles associated with the given eigenmode, and ;ni are the resi-

. \ sent ~bi .
dues associated with the poles S it The Y: and the Yn are, respectively,

1Admittance function resulting from the short-circuit boundary value
problem is used in this work. However, analogous results are valid for
the impedance function derived from the open-circuit boundary value
problem.




the possible entire function and branch integral function contributions.

Often it is more convenient to rewrite (2) in the form

- ~

> 2ni qni ~'ent ~'bi

Y (s) =2 (————- + — jJ+ Y (s) + Y (s) (3)

n . \s - s, s . n n
i ni ni

where the entire function has been appropriately modified to compensate for

the constant terms included in the summation. The terms under the summation
signs in (2) and (3) are known, respectively, as pole admittances and modi -

fied pole admittances [5].

It should be pointed out that for numerically or experimentally derived
SEM descriptions the entire function and the branch integral contributions
are not explicitly identifiable. To date, it also appears that for practi-
cal circuit synthesis it is necessary that both of these terms be zero.
Further, for many problems of interest, they seem not to occur. Therefore,
the branch integral and entire function terms are dropped henceforth from
consideration.

The SEM data (the poles and residues) for a given structure can be
extracted in three ways: 1) from measurements; 2) from an integral equa-
tion formulation by method of moments technique; or for certain simple
structures, 3) from an integral equation formulation.- analytically. As a
typical example, the location of poles for dipole and loop wire antennas is
shown in Figures 1 and 2 [42,43,45,7]. The first layer poles (poles closest
to the j-axis) with the associated residues are listed for both structures

in Table 1' and Table 2.

1 R . P .

The first pole of the dipole has been slightly modified (within a
5% accuracy margin) by Streable and Pearson in order to make the modified
pole-pair admittance physically realizable.
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TABLE 1

First layer poles and residues for center-fed cylindrical
antenna with L/d=100

L is the length of the dipole and 4 is the diameter of the
wire. The even poles with zero residues are omitted.

No. Polesl Residuesl

1. | -.08427 + 5 0.9158% | .1112 x 1072 + § .3121 x 10>
3. | -.1473 + j 2.870 L1319 x 1072 + § .3301 x 107>
5. | -.1877 + j 4.834 1423 x 1072 + 5 .3521 x 107>
7. | -.2177 + 5 6.792 .1496 x 1072 + 5 .3699 x 107>
9. | -.2426 + 3 8.736 .1557 x 1072 + 5 .3839 x 107>

lNormalized to cn/L, c - speed of light.

2Slightly modified by Streable and Pearson.

The admittance (1) can be realized only approximately by a finite
lumped network because the number of modes is infinite and must be truncated.
Also, the number of poles associated with each eigenmode is infinite for
some structures and only a finite number of them can be used. The truncated
admittance function may be no longer positive real (PR)l and thus realizable.

In such case still useful approximate realization can often be obtained
by finding pole groupings which give PR (or nearly PR) admittance function
and/or by resistive padding. Both approaches were first investigated,

successfully, by Streable and Pearson [39].

1 , < . st s
See Section II for explicit definition of positive real functions.
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TABLE 2
First layer poles and residues of loop wire antenna with =15,

Q=21n(21b/a), where a and b are the radius of the wire and the
radius of the loop, respectively.

i

No. Polesl Residuesl E
1. | -.7487 x 107! + § 1.0388 .5301 + § .8934 x 10™°
2. | -.1083 + j 2.0526 5726 + 3§ .9395 x 103
3. | -.1340 + 3 3.0625 .6033 + § .9873 x 107°
4. | -.1558 + j 4.0706 6279 + § .1033 x 107>
5. | -.1751 + 3 5.0777 6489 + § .1076 x 10>
6. | -.1927 + j 6.0840 6672 + § .1117 x 107°
7. | -.2091 + j 7.0897 .6837 + § .1157 x 107>
8. | -.2245 + j 8.0950 .6988 + j .1195 x 1073
9. | -.2391 + 3§ 9.0999 7126 + § .1231 x 10>
10. | -.2529 + j10.1046 7255 + 5 .1267 x 10>

lNormalized to ¢/b. There is also a pole at the origin with the
real residue a 0=4.6199 x 10~4, This pole can be easily real-
ized as a sing?e shunt inductance L=1/a00 and is dropped from
consideration here.

One pole grouping possible, which leads to PR function (although

recent investigations indicate that the branch integral contribution must

be retained in the terminal eigenadmittance for some structures) is the

grouping according to eigenmodes [29]. This, however, has the disadvantage,

that the number of poles increases dramatically for higher modes (see

Figures 1 and 2) resulting in impractically complex network. Also, the I

third- and higher-layer poles are usually hard to extract, and for many




even simple structures have not, so far, been extracted.

Even if the original function (1) is PR, a decomposition of it into
simpler, realizable terms is desirable. Such decomposition can simplify the
synthesis procedure significantly and also can lead to simpler network with
more desirable topology.

One particularly attractive way of decomposition is breaking the origi-
nal admittance function (1) into conjugate-pole-pair modules, as first
suggested by Baum [5] and investigated further by Streable and Pearson [39].

Because the first layer poles are so close to the j-axis (see Figures
1 and 2), they give the main contribution to the input admittance of the
structure. The question immediately arises if their contribution alone
could reasonably good approximate the whole admittance over the frequency
range of interest. That this is the case (at least for some high-Q struc-
tures) has also been demonstrated by Streable and Pearson [39]. 1In this
procedure the whole eigenmode pole group is represented by a single, first-
layer pole.

The first-layer pole grouping is particularly useful in cases when the
SEM data is determined from measurements, when the higher-order layers of
poles are extremely difficult to find [34].

The main concern of this study is the synthesis of the admittance
function (1) on the conjugate-pole-pair basis. Thus, the realization of (1)

in the form

-~ -~ N -~
Y(s) =L Yi(s) (4)
i
where
. 3 ey
Yi(s) s -3 ‘Ytz *tG (5)
i i




is investigated. In (5) the asterisk denotes the complex conjugate, and Gi
is the padding necessary to render ii PR. The index i distinguishes among
the conjugate pole pairs.

After putting the terms over common denominator, the admittance (5)

takes the form of a general biquadratic function

2
£(s) = As + Bs + C . (6)

Ds + Es + F

This function received a great deal of attention in the literature, because
explicit networks can be derived for it. The results scattered in the lit-
erature [13,14,28,33,20,3,17,41,48,19,36,46,18] are used heavily in this
report. The emphasis of this work, however, is on the approximate synthesis
stemming from initially non-PR biquadratics derived from SEM data. This has
important consequences on what synthesis procedures are applicable.

If not otherwise stated it will be assumed that f(s) represents an
admittance function Y(s).

The plan of the work is as follows. In Section II are summarized the
basic concepts concerning the PR functions, to which references will be made
in later parts of this study. In Section III the PR-ness conditions for
biquadratic functions are derived, the necessary padding (if the function
is non-PR) is computed, and synthesis methods for some special cases are
considered.

In Section IV a study on the applicability of the various general
synthesis procedures to a minimum biquadratic function is undertaken.
Explicit Brune, Bott-Duffin and Darlington networks are derived. 1In Section
V some important problems connected with the practical realization of the

networks, such as the influence of parasitic elements, are briefly




considered. A computer program for the synthesis of conjugate-pole-pair
modules, implementing the results of previous sections, is included in the
Appendix.

Throughout this study some concepts are illustrated with the particular
examples of the straight wire and loop wire structures with the parameters
given in the Figures 1 and 2, and in Tables 1 and 2. The particular values
1=100m and b=100m are used in synthesis in order to fix explicit wvalues

for circuit elements.
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Section II

POSITIVE REAL FUNCTIONS AND BASIC CONCEPTS

A positive real (PR) function f(s) is defined as a function of complex

variable s = 0 + jw satisfying the two requirements

Re f(s) >0 for ¢ > O,
and (7)

f(s) real when s is real.

The positive real concept was introduced by Brune [10], who proved that
every driving-point function of a physical network is PR and that every
rational function that is PR can be realized using lumped RLCM elements. It
was later proved by Bott and Duffin that any rational PR function can be
realized as a driving point immitance with RIC elements only [8].
Since it is extremely difficuit to aéply the conditions (7) directly, f
an equivalent set of requirements, whic¢ch are easier to check, is usually
used [15]. Thus, a rational function f(s) is PR if the following necessary
and sufficient conditions are satisfied (listed and carried out in their
order of difficulty in testing them):
A. It has no poles or zeros in the right half-plane
B. Any j-axis poles are simple and have positive real residues
C. Re f(jw) >0 for 0 < w <>, {
In an attempt to realize a driving-point immittance f(s) it is usually f
worthwhile, before applying a general synthesis procedure, to check if ;
there are any poles or zeros on the j-axis. Such poles and zeros can be

easily removed from Y(s) (susceptance reduction) and/or from Z(s) = 1/¥(s)

- 10 =
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(reactance reduction) without destroying the Pr-ness of the original func-
tion. When all the j-axis poles are removed from an admittance function
§(s), it is called a minimum-susceptance function [1]. 1In a similar manner
we define a minimum-reactance function as an impedance Z(s) that has no poles
on the j-axis. When, after applying these steps, a minimum-susceptance-
minimum—-reactance function is obtained, still another simplification, the

so called resistance reduction is often possible. Namely, if the condition
C. above is satisfied with the inequality sign, a conductance G can be
removed from Q(s) (or resistance R from Z(s)) still leaving the remaining
function PR. The real part of this remainder function is zero at some fre-
quency W, therefore it is called a minimum-real-part function. If the zero
of the real part occurs at mo = 0 or wo = o, it is also a zero of the whole
function because the imaginary part of a minimum-reactive-minimum-susceptive
function is already zero at these extreme frequencies.1 This zero of ¥(s)
(i(s)) can be subsequently removed as a pole of Z(s) (¥(s)) and the whole
process of real- and imagninary-part reduction can be attempted again until
the so-called minimum function (minimum-reactance, minimum-susceptance and
minimum-real-part) is obtained. In some cases this Foster preamble tech-

nique can lead to a complete, successful realization [38]. 1In general,

1Consider Y(s), for example. Im ¥(jw) is an odd rational function of w and
can take one of the forms

2 2
N(wz) or Im{Y(jw)} = N )

D(w™) D(mz)

Im {Q(jm)} =w

Assume that Y(s) is purely imaginary at w = 0. Then if the first form
above holds, Z(s) will have a removable pole at s = 0. If the second form
holds, then ¥(s) has a pole at s = 0 which can be removed. Similar argu-
ments hold for the case when the zero of the real part occurs at infinity.

e Crndm R tme ke Canin e e o e o




however, we end up with a minimum function with zero real part at some finite
frequency Wy and one of the general synthesis procedures must be employed.
The procedures in question are those of Brune [10], Darlington [12], Bott

and Duffin [8], and Miyata [26].

_—




Section III

SYNTHESIS OF BIQUADRATIC FUNCTIONS - PRELIMINARY

In this and the following sections we will be mainly concerned with the
synthesis of the biquadratic function (6) which can represent both Z(s) or
§(s), as the case might be.

The PR-ness condition for the immitance function (6) can be easily
derived [23,1,21]. If the coefficients of (6) are positive, the conditions
A. and B. of Section II are automatically satisfied. Thus, to guarantee

that f(s) be PR, we require that

- 4 2
. MM T MM _ ADw" + (BE-AF-CD)w” + CF
Re{f(;m)} = — = = (8)
2 2 . 2,2 2 2
m -n s = jw (F-Dw) + Ew
2 2
be nonnegative for O<w<= (condition C.), where ml, nl denote, respectively,

the even and odd parts of the numerator, and mz, n2 denote the even and
odd parts of the denominator of (6). This leads to the following necessary

and sufficient condition for f£(s) to be PR:

(/AF - /eD)2 < BE. (9)

If (9) is fulfilled with the equality sign, f(s) is a minimum function.
For the important special case where f(s) - 0 at infinity, i.e. A = 0,
we have

f(s) = —BS*C (10)

Ds  + Es + F
and the PR-ness condition (9) now reads

BE - CD > O. (11)
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when f(o) = 0, i.e. C = 0, we obtain

2
£(s) = —2S * BS (12)

Ds + Es + F

with the condition

BE - AF > 0. (13)

The above conditions can be easily expressed in terms of the poles and

residues. Thus, for the conjugate pole-pair admittance

g Tk
g %n an
Yn(s) " s - s + o oF (14)
n n
with a_ = o + jBn and sn = —cn + jwn we get the special case (10) where
B = 2a C=2(o_ =-Bw)
nn nn
2
D=1 E = 20 F = ]s l
n n

The PR-ness condition (11) and the requirement that the above coefficients
be positive give the following restriction on the residues

an wn
-]—B—;r > 5 (15)

n

This condition can be given a simple geometrical interpretation, as dis-
cussed by Guillemin [15].
The other special case (12) results from the modified conjugate-~pole-

pair module

5*
+ —s{‘- . (16)
n

This function approaches zero for s + 0 and is particularly well suited

for the modelling of the input admittance of simply connected objects.
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After combination of terms in (16) we get

2(Bw -a 0) B =20 (w 2. o 2) + 4B 0o w
nn nn n n n nnn

>
1]

D=|s ]2 E =2 |s |2 F=|s
n n'"n

The requirement that A and B be positive leads to the conditions

Bw =-ag >0 (17)
nn nn-—
and
a (w 2. o 2) + 28 0w > 0. (18}
n n n nnn
The PR-ness condition (14) gives
2 2 2 2
anon(cn - 3mn )+ ann(30n - e } > 0. (19)

It is interesting to point out that the PR-ness tests (15) and (17)
are mutually-exclusive, which means that a conjugate-pole-pair module can
be realized only in one of the two forms (modified or unmodified), but not
in both.

As an example, the test values for the center-fed cylindrical antenna
are given in Table 3. As can be seen from this table, all poles except the
first one fail to meet criterion (19). The test (17) is met by all poles
(thus (15) is vioclated), so the realization in the unmodified form (14) is
in no case possible.

Although the results given in Table 3 are somewhat discouraging, it is
evident that the PR-ness conditions are in most cases only slightly vio-
lated. This suggests that, after negligible padding - that is removing a
small negative real part from the function and neglecting it - an approxi-

mate realization could be possible. The results of such an approach are

e
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TABLE 3

Test values for the first layer poles given in Table 1.

Test value

Pole (17) (18) (19)

-3 =3 -5
1. .1921 x 10 .9729 x 10 .1485 x 10

-3 -1 -2
3. .7531 x 10 .1111 x 10 -.2945 x 10
5. .1435 x 1072 |.3384 x 1070 -.2088 x 10°%

-2 -1 -1
7. .2187 x 10 .7004 x 10 .7048 x 10
9, .2976 x 10°%  |.1204 -.1689

discussed in a later part of this report.

It is evident from Section II that the nature of the frequency character-
istic of the real part of an immittance function Re f(jw) is extremely
important in the synthesis procedure.

Following Matthaei [23], we can, in general, classify immittances of
the form (6) in three classes: Class I having Re f(jw)min at w = 0; Class
II having Re f(jw)min at w = »; and Class III having Re f(jw)min at finite
values of * mo (see Figure 3 (a), (b), and (c), respectively).

As was pointed out in Section II, an important process in the syn-
thesis of networks is the procedure of removing a real constant1 from the
immittance function, so that the resulting remainder function £°(s) has

the property that

Re{f’(jw)}min = 0. (20)

1We allow the removal constant to be either positive or negative, thus
implying the.removal of a resistance or conductance in the positive
case, or implying the neglecting of a small negative quantity - i.e.
padding.




Re f(jw)

Re f(jw)

CLASS II

Re f(jw)

a,

- - ———

Figure 3. Real part characteristics of three classes of PR biquadratic
functions.




Thus, we seek the frequency Wy and the removal constant a for which

m.m, - nn
12 12 =

__—3-——::75- a =0 (21)
M 2 s = 1w . :
min i
i
From (21) it can be seen that (

m, - nn_ - am 2 + o 2 =0 (22)

™M T Mt 2 Py s = jw

must have second-order roots at frequencies where (20) is satisfied.

Expressing (22) in terms of the coefficients of (6), we obtain {

D(A - aD)w4 - (W - aU)w2 + F(C - aF) =0 (23) ! g
where

W=AF + CD - BE U = 2DF - E°. "

The requirement that (23) has double order root in m2 [47] leads to the .

following equation for o
(0® - 40°F?)a? + (4aDF° + 4CD’F - 20W)a + (W° - 4ACDF) = 0 (24)

The smaller of the two roots of (24), for which i

wW-o__ .o, (25)

X = b@E - =

is the required solution.

Having a, the minimum~-real-part frequency wo can be computed from

w = VX . (26)

Before subtracting o from F(s}, we must compare it with a = £(0) and
a, = £(2). The smallest value among a, @ and o is the sought minimum
value of Re f(jw).

The constant removal affects only the numerator coefficients of (6),




———

the new values of which are given by

A =A'-GD
B =B' - GE (27
C=2C'=-GF

where the 0ld coefficients are primed.

If the o computed from (24) is negative, it gives the value of a shunt
conductance (or series resistance - for impedance function) which must be
added to the non-PR immittance f£(s) in order to render it a minimum PR func-

tion. This procedure is called resistive padding [15].

As a typical example, the real part characteristic of the third unmod-
ified pole pair module for the dipole antenna is given in Figure 4. As can
be seen from Figure 4(a) the real part is negative for low frequencies. |
This is shown in detail in part (b) of this figure. The minimum real part
frequencies and the resistive padding necessary to assure PR-ness of the
unmodified and modified pole-pair modules for the cylindrical antenna are
given in Table 4.

If any of the new coefficients A, B, or C in (27) happens to be zero,
the resulting function can be easily synthesized. Thus, if o« = A“/D,

A =0, and f(s) has the form (10). This immittance has zero at infinity
which can be readily removed as a single reactance. Similarly, if

a =C°/F, C =0, and we obtain the function of the form (12), which has
zero at s = 0 which can be removed as a pole of 1/f(s). In both cases the
remaining function can be easily realized with three RL or RC elements,
The final networks for the two cases with explicit expressions for the

element values, both for f(s) = Y(s) and f(s) = Z(s), are given in Figures

5 and 6, and Figures 7 and 8, respectively.
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TABLE 4

Minimum real part frequencies and necessary padding for Q
pole-pair modules of dipole antenna.

Minimum real part Necessary padding

Pole-pair frequencyl Unmodified | Modified
1. .0 2,201 | =e——-
: 3. 1.598 4.959 51.85
é 5. 3.243 6.507 32.21
L 7. 4.967 7.546 26.44
9. 6.708 8.379 24.14

lNormalized.

The third case possible, B = 0, is realizable only if

AF - CD = 0 (28)
(as a consequence of (19)). The resulting networks for the admittance
and impedance functions are shown in Figure 9.
The situation is more difficult for the case when all the ccefficients

of (6) are greater than zero but still in some cases a simple realization

! is possible. Thus if f(s) or its reciprocal is a Class I or Class II PR E
H function, it can be realized by a continued-fraction expansion - a process 3
of repeated long division and inversion applied to the numerator and the
denominator polynomials of the given function and its remainders in for-
ward or reverse order [23,22}.

It can be shown [23,20] that the biquadratic function (6) can be

expanded in continued fraction only in two cases when either

< >
F

o>

(29)




Figure 9. Ladder networks for the case B = 0.




- 27 =
and
AE2
BE > (CD - AF) + 5 (30)
or
A C
5>F (31)
and
2
BE > (AF - CD) +§—E. (32)
hold.

If the immittance (6) is a Class III function it cannot be realized
in a simple ladder form and in general more sophisticated synthesis pro-
cedures are necessary, as described in Section IV. However, if the func-
tion in question is not a minimum function, it often can be decomposed into
a sum of terms to which the simple synthesis procedures desscribed earlier

are still applicable [23,20]. Thus, if
BE > |aF - cD] (32)

the immittance (6) can be decomposed as follows.

If
A C
D>F (34)
we can write
D2 A~ 2 4ns
f(s) = > + > (35)
Ds + Es + F Ds + Es + F

where for the first term (28) is satisfied and it can be realized in one
of the forms shown in Figure 9. The second term is of the form (12) and
can be synthesized as shown in Figures 7 and 8. The PR-ness condition (13)

is guaranteed by (33).




If

C A
7 > D (36)
(and (33) holds) the following decomposition is possible
1\52+‘g—F Bs+————-CDl;1n‘F
f(s) = + (37)

Ds + Es + F D52 + Es + F

where again the first term is realizable as shown in Figure 9. The second

term has the form (10) and is realizable as shown in Figures 5 and 6.
Another alternative for decomposing a Class III nonminimum PR function

into sum of a Class I and Class II functions applies in some cases. It

takes the form

2
fs) = —25 *Ts ,(B-Ts+C (38)

Ds + Es + F D82+ES+F

From (11) and (13) the range of wvalues of the coefficient T can be deter-

mined as

<1 < EZCD (39)

It follows from (39) that this decomposition is possible only if

BE > AF + CD (40)

- a much stronger condition than (33).

It can be shown that if f(s) fails to satisfy (33) or (40), then
1/£(s) also fails to satisfy them.

A limited class of biquadratic minimum admittances can be realized
in a form of five-element bridge networks, as discovered by Kim and
vanvalkenburg [19,46] (see Figure 10). The conditions which must be satis-

fied by the coefficients are




(a)

Figure 10.

(b)

Five-e!ament bridge networks.




4 AF = 4 BE = CD

for the networks (a) and (b), respectively. This is, of course, a very
restrictive condition. Thus these networks are not of particular interest
in this development.

As was mentioned earlier, Streable and Pearson [392] have shown that
the first pole of the dipole éhtenna (see Table 1) can be perturbed slightly
(within a 5% margin) so that the modified pole-pair admittance associated
with that pole is physically realizable. This admittance has the form (12)
and circuit (a) from Figure 7 can be directly emploved. Unfortunately,
the other pole-pair modules of the dipole (and all modules, except the
first, of the loop) fail to satisfy the PR-ness condition (13). Thus, a
resistive padding is necessary. The padded admittances, however, has the
general form (6) and the simple networks from Figures 5 and 7 cannot be
used. It can also be shown that the decomposition techniques discussed
above apply neither for the dipole nor the loop antenna. Thus, the general
synthesis methods discussed in Section IV must be used.

It is evident from Table 3 that the PR-ness test is only slightly
violated by the third and higher order modified pole-pair modules for the
dipole antenna. (Similar situation holds for the loop antenna.) The
question immediately arises if these pole-pair admittances could be real-
ized approximately by still using the circuit (a) from Figure 7 and
neglecting small negative elements which could arise. Such attempt has
been made and the network shown in Figure 11 was obtained. The transient
response of this network for the Gaussian pulse defined in Figure 12 was

evaluated by SCEPTRE [9] circuit analysis program and compared with the

et bbb el i PPN et i
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response obtained from the TWTD [25] thin wire analysis program. The
results are shown in Figure 13. It is evident that, although the main
features are preserved in the circuit response, the agreement between the
two curves is not satisfactory.

Another approximate equivalent network for the dipole antenna results
from the approach suggested by Baum and Singaraju [6]. They approximated
the natural modes of the dipole by sinusoidal functions and derived analy-
tically the following expression1 for the residues (real and equal for all

poles)

a = — (41)

where Q is the thickness factor and ZO is the intrinsic impedance of free
space. For the dipole from Table 1 a = .001. For this residue and the
poles listed in Table 1 the PR-ness condition (14) is always satisfied and
the input admittance is realizable in the form (10). Using the circuit
(a) from Figure 5 we obtain the network shown in Figure 14. One defic-
iency of this network is apparent: its admittance is finite at zero fre-
quency, which is inconsistent with the structure under consideration.

The results of the SCEPTRE and the TWID analyses are shown in Figure
15. The same Gaussian pulse as before was used.

Again, the agreement between these curves is not very good, but the
last approach, as more systematic than the previous ad hoc procedure, is,

of course, more satisfactory.

1 .
Normalized to wc/L.
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Section IV

' SYNTHESIS OF MINIMUM BIQUADRATIC FUNCTIONS - GENERAL

: METHODS
( It is shown in Section III that the equivalent network synthesis on
pole~-pair at a time basis leads in general to nonrealizable bigquadratic
modules for the dipole and loop wire antennas. The real part characteristic
E shown in Figure 4 is typical for these modules. It is also shown that the
PR character of pole-pair admittances can be restored by negligible resis-
] tive padding. It is conceivable that this also holds for other (at least
high-Q) structures.

After resistive padding we obtain a minimum biquadratic function. Thus,

the function (6) for which the condition

(var - v’CD)2 = BE (42)
F holds. In general, this will be a Class III function (see Figure 3), the

real part of which is zero at some finite frequency W, (if it happens to

be a Class I or Class II function it can be easily synthesized by the

methods of Section III). From (8) and (42) it can be shown that

ﬁ It is easy to see that the condition (42) can be satisfied by two
] different sets of coefficients for which
YAF - /CD = VBE (44a)
or
/AF - VCp = - VBE (44b)

These will be referred to as cases A and B respectively.

|




which leads to

(AE - BD)(u2 + (BF - CE)

(F - Dw2)2 + E2w2

B(w) = Im{Y(Jw)} = w {(45)

At frequency W, with the help of (43) and (44) we obtain

_ /AB
B(wo) =w, />0 (46a)
for case A, and
/BB
B(wo) = —mo F <0 (46Db)

for case B.
In the fellowing, the synthesis procedures applicable to minimum Class

III biquadratic functions are discussed.

4.1 BRUNE METHOD

Intrinsic to this method is the use of a perfect transformer. Thus, it
is rather impractical and is seldom used, except as a last resort. On the
other hand, the Brune network contains the minimum number of elements possi-
ble and thus can be convenient for analysis and modeling purposes.

At the frequency mo the whole impedance 2(jw) = l/?(jw) is purely
reactive

s o
Z(jw) = JX(wo) = -J-Wo‘)‘ (47)

and can be represented by a single inductance

_ -1
Ll = W . (48)

L et e e e




For the case A, using (43) and (46a) we obtain

DE
Ll = - /E (49)

Although L, is negative we proceed to remove the impedance slifrom Z(s):

2

~ o D + Es + F DE

Z,(s) =2(s) - sL = —————52 = + /—BC s . (50)
As + Bs + C

1

We know that Z(s) has a zero at s = tjwo thus the term (52 + woz) can be
factored out in (50) to give
E DF
- 2 2, BB st A ac

Z.(s) = (s" + w ") (51)
°© as’+ms+c

The zero of 51 can be removed as a pole from ?l(s) = l/ﬁl(s)

2a s

~ o ~
Yl(s) == 3 + YZ(S) (52)
s <+ wo

where the first term represents the admittance of a series L2Co circuit

(Figure 16). The residue a_ can be easily computed as

B 2 B CF
B8,FY% “F/mp" (53)
The values of L2 angd Co are given by
- _E LI _EF /AD
=22 "B 2"8B/CF (34
o w
o
1 B
=2 " F° (55)
w_ L
o 2

From (52) and (53) the impedance Z. = 1/3?2 is obtained as

2




(56)

N2
N

@

0]

0™
22

n

+
0|

which can be realized as a series L3R circuit, where

F AE
L3 =c /ﬁ (57)
and

F
R——c-. (58)

The resulting network is shown in Figure 16. The negative inductance Ll can
be realized with the help of a perfect transformer. The network shown in
Figure 17 results.

By development analogous to the above, it can be shown that this network
is also valid for the case B.

As an example, the Brune equivalent network for the dipole antenna is
shown in Figure 18. (The amount of resistive padding used is given in Table
4. For the first pole-pair admittance, which is a Class I function, the net-
work (a) from Figure 7 was used.) The transient response of this network
for the Gaussian pulse (Figure 12) is compared with the result of the TWID

analysis in Figure 19. Except for the early time, an excellent agreement is

observed.

4.2 BOTT-DUFFIN METHOD

This is the most general transformerless synthesis method. 1It's main
disadvantage in general application is the exponential growth of the number
of elements required with the number of cycles needed to reduce the given
function to a constant remainder. This difficulty is insignificant in the

present application of synthesis of biquadratic functions. Therefore it is




Ly L3
Y(s) -
T
L= E L =E AD
' BC 2” BVYGeF

=E£./A =8 E
L3=&vegr C=F R=%

Figqure 16. Brune network for biquadratic.

5 k=1
L "
Yo —™
== ¢
pa
=D = AE
“a= g Lb=8C
=E . /AD = =E
Mb=gver ©=F R=¢

Figure 17. Brune network for biquadratic ~ final rorm.
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considered in detail here. - ’

In the Bott-Duffin procedure, one makes use of the Richards function

R(s) = Kils) - s¥(k)

T k¥ (k) - s¥(s) (59)

in which k is a real positive constant. It may be shown that R(s) is PR if
Y(s) is PR, and that the order of it (defined as the total number of its

poles or zeros) is not higher than that of Y(s).

The equation (59) can be solved for Y(s) to give

Y(s) = 1 + 1 (60)
> 1 Z_(s) + sL
z,(s) + S 2
(o]
where
_ Res)
Z, (s) = Y0 (61)
Z,(s) = S — (62)
Y (k) R(s) !
_ Y(k)
C, =5 (63)
o1
I ™ kY (k) ° (64)

This corresponds to the network shown in Figure 20. Note that the PR-ness
of Y(s) assures that the values C0 and Lo are positive and real.

It is easy to see that the network from Figure 20 is a balanced bridge
with the points A and B on the same potential. Thus, any impedance (even a
short circuit) can be placed in the detector arm A-B without affecting the
input admittance of the circuit. This can be exploited to reduce by one

the number of reactive elements necessary [27,32,37].




|

I

N

s A 2(5)

e

Z|(s) Bt

Illustration of the Bott-Duffin method: network corresponding to
eq. (60).

Figure 20.
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At the frequency s = jwo, from (60), we have

. . _ 1 1
Y(Ju ) = JB(wo) = S . I + TR T (65)
1 o jw C 2

The special cases A and B referred to in the preceding section are
treated separately.

Case A

Because B(wo) > 0 for this case, the only possibility in satisfying
(65) occurs when él(jwo) = 0 and ﬁz(jwo) = », From (61) and (62) we see that
this requires that é(s) have a zero at s = jwo. This in turn regquires that

the numerator of (59) be egqual to zero at this frequency:

k§<jwo) - ju ¥(k) =0 (66)

or

w ¥Y(k) - kB(w ) = 0. (67)
o (S

From (67) with the help of (46a) the value of Co can be computed as

B(w )
_Y(k) o' _ /AB
Co = X = o = /E?" (68)

In order to determine the value of Lo' eqg. (67) must be solved for the real

positive root k:

2
§2_+_§1_<_+_C_k /% = 0. (69)
Dk + Ek + F

with the help of (44a) this equation leads to

3 CE , 2 CFr C
k /BD k™ + /AD k ~ 5

EF
a5 - O (70)




Although (70) is a third order equation, the difficulty is an apparent cne
only, because we know the two of the roots: k = tjwo. Thus, dividing (70)

by (kz + woz) we find

_ [E
k = 5D (71)

From this equation and from (68) it follows that

= /A
Y(k) = /o5 (72)

and

=1 - D /BE
L ww “c/as (73)

The impedance il(s) has a zero at s = jwo and 22(5) has a pole at this
frequency. The poles of l/él(s) and 22(5) can be removed by the following

expansions

1 1 1
2 = + = (74)
zl(s) s2 + 2 Rl
o
. 2azs
Z2(s) = 5 + R2. (75)
s” + W,

The residues al and a2 determine the values of the series~connected Cl and

Ll and the parallel-connected C2 and L2 (see Figure 21).

In order to compute the residues ay and a, we note that the numerator

and denominator of the Richards function must have the common factor (s-k)

{49). After dividing it out, with the help of (44a), (71), and (72),

we get




Figure 21.

M = BJ/DF + EVAC

Bott-Duffin network for the Case A.
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and
M s
1 DVYDF A
- =72 2 b
Z. (s) s +w
1 o)
M $3)
/T .
Z2(S)=2 2+E
S +w
o
where
M = BYDF + EYAC .

Comparing (77) and (78) with (74) and (75) we obtain

C=2_a£=M_/§
1 2 DF C

L = L1__DME
1 2al M

c = 1 _a P
2 2a2 M F

[ag]
[\*]

[}

[\%]

%
[\ ]

']
3"3
(@)
o

D
B =2

F
R2 = E .

The final network for the case A is shown in Figure 21.

Case B

mn

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

In this case B(wo) < 0 and (44b) and (46b) apply. From (65) we see




that 1/él(jwo) = 0 and 22(jwo) = 0 which, by virtue of (61), (62), and (59),

leads to the condition

ky(k) - jmoY(jwo) =0 (86)
or
kY{(k) + w Blw ) =0 (87)
o o)
From (65) and (87), using (43) and (46b) we obtain
S W S
L iwwm ~ woB(wo) BC ° (68)

In order to determine the value of Co equation (87) must be solved for k.

With the substitutions (43) and (46b) we obtain

VSIS SR

g = 0© (89)

Dk2 + Ek + F

which, with the help of (44b) leads to the egquation

3 /BF .2 F /BC _
Kk~ - A5 x° + k a = 0. (90)

o 2 .
Dividing (90) by (k2 + 0 ), as in case A, vwe get

Bl

BF
k = 3E ° (°e1)

Using (88) we also have

= /RS
Y(k) = /== (92)

and

_¥k _A [CE
c =5 =5/ - (93)




-~ 51 -
l The Richards function can be expressed as
| e (- 23 ) ERS
R(s) = . (94)
52 + C_F
AD

The poles of il(s) and 1/22(5)

. 2als
Zl(S) == 7 * Rl (95)
s +w
o
2a.s
1 2 1
= Z "R, (96)
Zz(s) s +w 2
Using (61), (62), and (94) we obtain
M
a/ac * p
zl(s) =3 N (97)
s° +w
o
and
M_ /_‘c_ <
1 DFY A C
= = + =, (98)
Z, (s) P2 i4,2 F
o
where M is defined as in case A. Comparison with (95) and (96) gives
1 AYAC
©1 %% " wm (99)
1
2a
1 M D
L =—==3/F " (100)
: w
‘ o
2a
2 M
c = = M (101)
‘ 2" 2 R
o
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V1
I

N DA (0] §)

Figure 22.

%=+VEp Ry=¢
Co=F/r Lp= E‘/%
Ly Aic t = A%E
R =2 L°=~ﬁ;—-g
M = BJ/DF + EVAC
Bott-Duffin network for the Case B.




__1_=£ﬁ
L2—Za M g (102)

D
R, = N (103)
and

F
R, = c - (104)

The final network for the case B is shown in Figure 22.

Modified networks

As was mentioned previously, in both cases A and B one element can be
spared by placing appropriate reactance in the detect detector arm A-B and
performing delta-T or T-delta transformation. It has been shown by
Balabanian and Cahn [2] that in order for the T-delta transformation to be
physically realizable the impedance éb(see Figure 23) must be inverse to
ic and éa must be inverse to the sum of the first two. Similar conditions
must hold for the delta-T transformation. It is easy to see that the net-

works shown in Figure 24 satisfy the above conditions if the resonance fre-

quencies of the circuits formed by LaCa and Lbe are equal. Thus if

Lc=Lc=—15. (105)

w
o

The relations between the elements in the T and Delta networks are also
given in Figure 24 [11].
Consider the case A first. From the above considerations it follows

that a capacitor C, should be placed between the points A and B in Figure

b

21, the value of which is given by condition (105) as

A /CE
Cb =&/ 8 ° (106)




Figure 23. Illustration of the T-delta transformation.

Lo
(00
JL L
o iy e I c
a —t
— L
C
I
o}
b b
C [ ct
C. = (C, +Cp) T = — Com—>R
I |
= — C.=C +Cm L =——
(g | c
wg w§ Cp
Cp= ¢ L]I-; LoCq= Lccb=—l"
Figure 24. T-delta transformation used to simplify the Bott-Duffin networks.




After replacing the T which appears to the right (Figure 21) by delta, the

network shown in Figure 25(a) results. The equivalent network given in

Figure 25(b) is obtained when the delta which appears at the bottom in Fig-
ure 21 is replaced by T.

For the case B, by analogous procedure, by placing an inductor

_D /BF
Lc o/ AE (107)

in the detector arm of the network in Figure 22, we obtain the two equiva-
lent modified Bott-Duffin networks given in Figure 26.

It should be pointed out that, although the two networks given in
Figure 25 are fully equivalent, one of them may have more desirable element
values from the realization point of view. The same holds for the networks
in Figure 26.

As can be seen in Figures 25 and 26, the Bott-Duffin networks even in
the reduced form, are more complicated than the Brune network (Figure 17).

Apparently the price we pay to avoid transformers is extra elements.

Simplified Bott-Duffin Networks

It is of interest to note that all pole-pair modules for the dipole
and loop wire antennas qualify for the case A, i.e. at the zero real part
frequency Wy they can be approximately represented by a single capacitance
Co given by (68).

Real part characteristic of a typical modified pole-pair module,
before and after padding, is shown in Figure 27. From Figures 27 and 21

it is evident that R, = 1/G. If the padding G is really negligible, R

2 2

is a large resistance. Consequently, the whole branch in series with R2

contributes insignificantly to the total admittance and can be neglected.




e
]!
/1
1)

N

Pigure 25.

c, /4

— /AB - AC /DE
Co=vEr Co=RVar
R ==ji L ==fﬂ22§§§
2 c 1 |“2

- R

2
c, =ﬁ%b“/3?c-‘: R = F/BD+EVCE
M = B/DF+EJAC
(a)

Modified Bott-Duffin networks for the Case A.
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= ./AB =E

=M QAC . /DE
2= qe/Ee C2= M2 ¥ AF

=D -9 . /Ac
R A C = COVY BF
L= &éﬁ Q = AVCE+BBD

M = BVDF + EJ/AC

(b)

Figure 25 (Continued).




L= g% Q = DVBF + E/AE

Mqu/b-F'O'Em

(a)

Figure 26. Modified Bott-Duffin networks for the Case B.




Cq Fg'i? L2=AF§J§.%
Rp= ¢ L:’ﬁ% o
Ry=2 R = C/AE + BYBF

M= B/OF + EVAC
(b)

Figure 26 (Continued).
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This simplification was first discovered by Streable and Pearson [39].

I It is conceivable that for some structures, made of a non-perfectly con-
ducting material, the real part characteristic of pole-pair admittances has
the form shown in Figure 28. Then, if the case B applies, the resistor

R1 = 1/G in Figure 22 is large and the whole branch in series with Rl can be

neglected.

The simplified Bott-Duffin networks for both cases A and B are shown
in Figure 29.

The admittance of the simplified Bott-Duffin network for case A (see

Figure 29 (a)) is given by

2 /AC ) AC]
. s{?s + (B +E/55 )s + B/
S = T P -
(S + /ﬁ)(DS + Es + F)

This is a third order function which approximates the original second order

admittance (6). Note that besides the original poles, an additional real
pole (which happens tc be close to tle origin for thin wire dipole and loop
antennas) is introduced. Also a zero at the origin is added. It is evident
that for higher frequencies the added zero and pole will approximately can-
cel and this function will differ insignificantly from the original one.

The equivalent network for the dipole antenna using the simplified Bott-
Duffin module from Figure 29 (a) is shown in Figure 30.l

The transient response of this network for the Gaussian pulse (Figure 11)
is compared in Figure 31 with the result of TWTD analysis. The agreement is

excellent except for the early time. Corresponding results for the loop

antenna are shown in Figures 31A and 31B.

lThe first pole-pair module was realized by the method given in Section III.
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DARLINGTON METHOD

In this method we seek the realization of a given function

m,2 +n
Z(s) = al—:f;l' (108)
2 2

in a form of an input impedance of a lossless two-port terminated in a single

resistor (Figure 32). Thus, Z(s) can be written in the form

1zl
. Rzll + 1z1 1+ Rzll
Z(S) = ———— =2 e e (109)
R+ 2z 11 z
22 22
YR

where the zij's are the open-circuit admittance functions.

and

By comparison with (109), (108) can be rewritten in two ways as follows:

ml 1+ nl/ml
—_——=; (case 2) (110)
nz 1+ m2/n2

5(5)

]

nl 1+ ml/n ;
—_ = (case B) . (111) i

m2 1+ nz/m2

Z(s)

Thus, we can make the following identifications.

Case A Case B

z,. = Tl z . = 2£ (a)

11 nl 11 m2
4 m z n
22 EZ— 22.2 ()  (112)

2 2
“12 _ MN(=s%) 212 _ n-s?) ©)
R n, R n, !




Z(s) —= LOSSLESS R

g— #-

Figqure 32. TIllustration of the Darlington procedure.

N

Figqure 33. Cauer realization: component two-port for a compact pole.




2
N(-s") = mm, - nn, . (113)

It is easy to see that z.. and z being the ratios of odd and even

11 22’

parts of Hurwitz polynomials, are realizable reactance functions. In order
to satisfy the conditions of realizability of a lossless two-port we must

require that z be a rational function (N(-sz) or -N(-sz) must be a complete

12

square) and the residue condition

kyjkyy = kyp” 20 (114)

be satisfied at all the poles [1,16].

For all finite poles si = jwi, in the case A, this condition takes the

form

=]
E]
f
[ V]

m.m_R
1 2 - 12 = 0. (115)

N
N

dn (dn2)2
ds s = Jwi ds s jwi ds s = Jwi

il

Thus, the residue condition is satisfied with the equality sign at all finite
poles (the poles are compact). Similar conclusion holds for case B.

The set of three rational functions z 297 and z for which the

11’ 2 12

residue condition (114) is satisfied at each pole can be synthesized by the

Cauer realization procedure [1,49]. 1In this method the set of z parameters

(112) is expanded in partial fractions as follows

G T, @l
k1 I =) K1y |
z,, =1 —== I+ x s +, —————
11 s | 11 | 2. ..2 l
[ - | sty
l Rk (0)' - ' ' 2Rk (l)S '
, ol _22 o O, 22
22 s l 22 | 2 7| (116)
[ ! I os™ +w)
! | I [ I
| o)
1 /R k ' I | &k, Mg
12 ]| (=) 12 5
z = + /R s +
|
12 s 12 %7 2 2 ,
' ] [ st 4
[ P S . -4 [




where only one pair of finite j-axis poles has been explicitly shown. Next,
the parameters in each of the brackets are realized as a two-port and the com-
plete realization is obtained as a series connection of these components.

If the poles are compact, the component two-port can be synthesized by
the network shown in Figure 33. The open-circuit impedance functions for

this network are

2
zll = Z, 222 =n Z, and z12 = nZ . (117)

The parameters in any one of the brackets in eq. (116) can be represented as

211 = K 908),

222 = szzg(s), (118)
and

215 = YRk 9(s),

where g(s) represents 1l/s, s, or 23/(52 + wlz). I
!

Comparison of (117) and (118) gives

Z = kllg(s) ' (119)
and k22
n = /E'i;—- . (120) :
12 ¥

It is evident from (120) that the ideal transformer associated with the

given pole can be avoided by choosing

R=——= . (121)

Returning to the biquadratic function (6) we have

D52 + F,

3
]
=
[}

Es,

m, = As2 + C, n, = Bs, (122)

N(-sz) = ADs4 + (AF + CD - BE)s2 + CF.




Making use of the minimum condition (42), the last expression can be written in

the form
2 2
N(-s") = (YAD s + VCF ) . (123)

Thus, N(-sz) is a complete square and the case A applies.

Substituting (122) into (112) we obtain

z,, = = ER (a)
11 Bs B !
=r&l A
222 = R Bs + R B s , (b) (124)
YCF 1 YAD
212—&—8—-5—'4-\/&-—';3. {c)

It is easy to see from (124) that both the residues at zero and infinity are
compact.

From (119) and (120) we obtain
Z = Fl , n=/R Y F
B s

for the pole at zero and

for the pole at infinity.

The Cauer realization is shown in Figure 34. The presence of perfect
transformers makes this network highly undesirable for practical realization.
The upper ideal transformer can be however replaced by a perfect transformer
according to the equivalence shown in Figure 35. The lower ideal transformer
can be completely eliminated if we choose R according to (121). Thus,

R = F/C. The final network is shown in Figure 36. Being identical with the

Brune network derived previously, it suffers, of course, from the same

S

e i




Z(s) — | R § J

| :ng
B 1
C=—F' ———
% F—
T

Figure 34. Cauer realization for biquadratic.




PERFECT

# IDEAL —

l Figure 35. Perfect transformer and its equivalent.




R

AF
BC

Figure 36. Darlington network for biquadratic.

- B —
apire b oprtic ) § . -
S oy i




deficiencies.

Hazony [16] described a modification of the above procedure leading to
no transformers at the expense of more RLC elements. This approach is dis-~

cussed below.

Consider the even part of a minimum biquadratic impedance function
2(s) = 1/%(s)
AD(s2 + woz)2
Evi{Z(s)} = (125)
(As2 + C)2 ~ B252
where either (44a) or (44b) holds and mo is given by (43).
. . 2 2 2 2, .
By multiplying (125) by the surplus factor (k= - s )/(k” - s7) it can
be decomposed as shown below
) k2ap(s? + w02)2 »
Ev{Z(s)} = 5 > >3 5 |
[(ak + B)s® + kC]“ - s“[as” + C + Bk] ;
(126)
2 2 2
-5 AD(s2 + Wy ) :
+ .
!
[(ak + 13)s2 + kc]2 - 52[A52 + C + Bk]2 .
or
2 2
ot ot 5 mo " no
Ev{z(s)} = Ev{Zl(s)} + Ev{Zz(s)} = —3 3 +—3 el (127)
My Ty M 2
where il(s) and 22(5) can be synthesized by Darlington's procedure. The
positive constant k can be chosen so that no transformers result.
Consider 21(5) first. From (112) we have
z m 2
22 2 (Ak + B)s~ + kC
== > , (128)
2 oy s(As” + Bs + C)
z m kVAD(s2 + w 2)
12 o o)

s(A52 + C + Bk)




- 76 -

There are two distinct cases which will lead to no transformers: (1) the zero

¥ of z_ . will cancel ite pole or (2) =z

12 has same zeros and poles as 2

22 12°

For the first case we have

or

VaF - /CD
B

oI

which is positive only when (44a) holds (case A). Thus,

= /SE
k= /& - (130)

In the second case above we have

ST AN ST T T TS e

e e

kT B = W ’ (131)

R o~

or

. which is positive only when (441 . “w0lds (case B). Thus, Ly

/BF
k = aE * (132)

In both cases the remaining impedance z

e Ty

11

can be found from the residue 'i
condition (the residues must be compact).

Consider the case A first. Substituting (130) for k in (128) and (129)

we obtain (after partial fraction expansion) 1

+

2 52 + w
(o}

z €/ s M
22 _ F/ aB AYDF
R s 2




-

and, from the residue condition,

11 = S (135)
with
M = BY/DF + EVAC .

This set of parameters can be now easily realized by the Cauer method

described previously. For the pole at zero we eliminate the ideal transformer

by choosing the value of R, as prescribed by (121). Thus, R, = F/C. The

2 2

pole at tjwo is a private pole [47] of z and can be simply realized as a

22
parallel LC network connected in series with the output. The resulting net-

work is shown in Figure 37.

Consider the case B next. From (128), (129), and (132) we obtain

CVBF MB /E
VA s — E

22 _ R, _RATE (136)
R2 s s2 + R
AVAE
and
. EEC  _m fF
12 R RAY E
—_——= +
= s < &k (137)
2 S + A /—AE

with







From the residue condition we get

MBF
S Ra/CE
R

2
S * A/aE

L2}
k&)

117 . (138)

The choice R2 = F/C leads to a transformerless realization shown in Figure
38. This network is equivalent to network shown in Figure 39.

For the impedance 22(5), from (126), (127), and (112), we have

Z P s(as® +c + BK)
2.2 5 , (139)
1 ™2 (ak + B)s” + ke
and
z,, A sVAD(s2 + woz)
= — = . (140)
/Ry My (ak + B)s® + kC
Again, two cases wre possible. For the case A we get
§§v~_
z s 2VAC
22 = s AvYBD . Q , (141)
R Q 2 ., C/CE
1 s +
Q
%EV__
12 0/, T Q7 (142)
R 0 2  CvCE '’
“ s +
Q
and
MBD/AE
o/ep S Q2 A
% + , (143)
Q 2 . CYCE
[ +
Q
where

Q0 = A/CE + BYBD .

The choice Rl = D/A leads to a transformerless realization shown in Figqure 40.




4 CO = RZ
Lo
@
& —
y
M F
c,=-M_ =E
27 FJOF R2=¢
é
L A /CE OF /&
‘ Co="Fv 8w Lo= M g

Figure 38. Darlington procedure: realization of zl(s) - Case B.
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Figure 39. Darlington procedure: network equivalent to network given in
Figure 38.
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Figure 40.

Darlington procedure:

realization of gés) - Case A.




D./DF D
Lla m R'SA

Figure 41. Darlington procedure: network equivalent to network shown in
Figure 40.




This network is equivalent to the network shown in Figure 41.

For the case B we get

M
222 A /BE DYAC
R, °B/cp 2 7 (144)
1 + W
o
z
12 _ ¢ /A2 (145)
/R BC
1
and
DE
le =5 B - (146)
With Rl = D/A this set of parameters has the realization shown in Figure 42.

If we now connect in series the networks for Zl and 52 for the cases a
and B, the networks in Figure 43 result.
It can be shown by using the equivalent networks from Figures 38 and 41,

that the networks obtained are the Bott-Duffin networks (Figures 21, 22)

except that the detector arms are short-circuited.

4.4 MIYATA PROCEDURL

In this method the even part of the given function z(s) is decomposed l
as follows
2. P
2 I a (-s7)
> _ _N(=s7) _pP P
Ev{z(s)}—mz‘ 5 = R
2 T M2 My T
2 2. n
a a,(=s) a (-s%)
= Q. + L + + =
m2-p2 g2_,2 7 2 2
2 T 2 2 M T
=E{Z } + EviZ } + ... + Ev{Z } . (147)
o 1 n




Figure 42. Darlington pProcedure: realization of Zés) - Case B.
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C2
Co =
[
E
Lo |
% . :
1 4

EF ™ ?

M /A F

Lz Ac“/F;T Ra= ¢ '

i

ovBD =D 4

Lo™ =0 Ry== 1
L, = MBD Q? /A

1™ CQ/AE C""MBD‘/';‘ )

Q= A/CE + BJ/BD vAF - J/CD = J/BE

(@)

Figure 43. Final form of Darlington networks for Cases A(a), and B(b). H
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1L
¢, =R L
Lo é
Ry
CO —_
Ra
Lo Co =<
< AyYAC =M /D
C L= AV FE
= ./DE D
R F
0" FVEF R2= ¢
MBF /A RAVCE
Lo= Ra"/: C2™ “mBrF

R = C/AE + BVBF

(b)

Figure 43 (Continued).

J/AF - J/CD =-/BE

N ‘-.\ku‘»a-«ﬂ




If the coefficients a; are positive, each of the even parts in (147) will
correspond to an impedance which can be realized as a network containing n
reactive elements plus a resistance.

Even if some of the coefficients a; in the original function are negative
they can be made positive by multiplying the numerator and the denominator
of Z(s) by suitable surplus factors [1]. This procedure fails however if
N(-sz) contains factors of the form (s2 + w02)2. A look at eq. (125) reveals

that our function falls into this very class. Thus, the Miyata procedure

is not applicable to minimum functions.

id
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Section V

PRACTICAL MATTERS

5.1 CAPACITIVE ADJUSTMENT

It is of interest to point out that all the SEM derived equivalent net-
works given in Section IV fail to reproduce the early time response of the
structure, as computed by TWTD program. It was suggested by Streable et. al.
[40] that this departure of results is attributable to the quasistatic influ-
ence of the reactance which one neglects when the summation (1) is truncated
to a finite number of elements for realization. This asymptotic reéctance of
a given structure must be computed apart from the SEM representation and the
reactance of the truncated equivalent circuit must be adjusted with additional
element (s) so as to match that of the object in the asymptotic limit.

As an example the static capacitance of the simplified Bott-Duffin net-
work for a dipole antenna (Figure 30) was adjusted by adding a 70 pF capaci~
tance Ca in shunt. A remarkable improvement in the early time response of
the network was observed (Figure 44). This particular value of Ca was found
by a cut and try method but systematic means of finding it are conceivable.
For example, Ca could be determined as a difference between the static
capacitance of the structure determined by some auxiliary means - for
example, a method of moments solution for the static capacitance - and the
static capacitance of the equivalent network synthesized from the SEM data.
Unfortunately, it is believed that this method cannot be employed in the

case of approximate, resistively padded networks.

5.2 PARASITIC EFFECTS

All networks considered thus far comprise only ideal RLC elements.
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However, in the practical realization each element introduces some parasitic

elements which have deteriorating influence on the network performance. There-
fore the impact of the parasitic effects should be carefully considered,
particularly if the network has to operate at high frequencies.

As a rule, the inductors are the most troublesome elements. The quality
of resistors and capacitors is usually much higher and they can be often
treated as ideal, particularly at moderate frequencies. B

A useful equivalent network for an inductor is shown in Figure 45 [44].
This three-element network offers a fairly accurate description of most coils
at frequencies where they are designed to operate.

As an example, we considered the effect of the parasitic elements intro-
duced by inductors on the performance of the egquivalent network for the

10*10

dipole antenna (Figure 30). The quality factor Q = 200 at frequency w

rad/sec was assumed for all coils and the computations were done for C 1pF
and C = 2pF.
The network responses for these cases are compared with the response of

the original network in Figures 46 and 47. It is evident that the parasitic

effects have very deteriorating impact on the network performance. As can

be seen from these figures the response of the network is very sensitive to
the change of the parasitic capacitance. Thus, whenever possible, configura-
tions should be chosen in which capacitors appear in parallel with inductors.
For then the parasitic effect can be cancelled by reducing the size of the

capacitor. The parasitic capacitance then makes up for the reduction.

5.3 NETWORK SENSITIVITY

Another factor limiting the practicality of the realization is the sensi-~

tivity of the network response to changes in element values. Thus, it is
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important to choose, from all the networks available, the one which exhibits
the least sensitivity.

It was shown in Section IV that the only transformerless synthesis pro-
cedure available for minimum biquadratic functions is the Bott-Duffin method.
Unfortunately, the Bott-Duffin network is very sensitive to component errors.
The mechanism behind this sensitivity is as follows [47].

The admittance of the Bott~Duffin network (Figure 21) should generally
be of order six. Thus, in order to represent a second order function, a
cancellation of some poles and zeros must occur - the network is a balanced
bridge. If the element's values are changed in some random fashion, then all
zeros and poles migrate and the bridge balance is destroyed producing a
significant change in the character of the function.

As shown in Section IV, it is the minimum PR character of the approxi-
mate pole-pair admittances that restricts the applicable synthesis tech-
niques. Thus, it is conceivable, that by excessive resistive padding, but
still within the limits of acceptable approximation, other, less sensitive
realization could be obtained (by Miyata procedure, partial fraction expan-
sion, etc.).

Finally, it should be noted that the equivalent networks of high-Q
structures (like thin wire dipole and loop antennas) are intrinsically very
sensitive to changes in element values, no matter what the form of their
realization. This is so because the poles of the sensitivity function coin-

cide with the poles of the immittance function.




I
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Section VI

CONCLUSIONS

The first layer conjugate pole-pair modules for the dipole and loop wire
antennas are, in general, not PR. However, they can be made PR by negligible
resistive padding. It is conjectured that this is true for most high-Q
structures.

The padded pole-pair module is a minimum-real-part biquadratic function.
If the zero of the real part of this function occurs at zero or infinity,
it can be easily realized by continuous fraction expansion (Section III). If
however the zero of the real part occurs at some finite frequency (the func-
tion is Class III, in terminology of Section III) then, as shown in Section
IV, the Bott-Duffin network constitutes the exclusive transformerless form
derivable.

It is shown that for structures which qualify for this type of analysis
the Bott-Duffin network can be simplified to a simple four-element network.
This network has been shown to give very favorable results for straight-wire
and wire-loop antennas.

Explicit forms of this and other networks are derived in Sections III
and 1IV.

It is shown in Section V that the early time response of the dipole
antenna can be significantly improved by capacitive adjustment. The value
of the capacitor added must be, however, computed apart from the SEM
representation.

As was demonstrated in Section V, the parasitic elements associated

with the real RLC elements can have a very deteriorating influence on the
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network performance. Therefore, if one attempts practical realization of the
network, this issue should be carefully considered in the design.

The sensitivity of the network response to changes in element values
is another factor which limits the practicability of the derived networks.
Thus, whenever possible, the least sensitive network should be chosen for
realization.

Finally, the equivalent networks of high-Q structures are intrinsically

very sensitive. It is this kind of sensitivity which dominates in the case

of thin-wire structures.
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Section VII

APPENDIX

Below the listing of a FORTRAN program for the conjugate pole-pair synthe-
sis of an admittance function implementing the results of Section III and
Section IV is included.

The program works in conversational mode. The input consists of the
poles, the residues, and the normalization constant (identical for poles and
residues). The program computes the coefficients of the biquadratic (6),
the minimum real part frequency, the necessary padding (with respect to
unmodified pole-pair module) and prints out the element values (normalized
and absolute) for several different network configurations. The element
names refer to relevant figures of Sections III and IV.

A sample run is included following the listing of the program.

- 99 =
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DIMENSION ALFA(10),BETA(10),SIGMA(10),0MEGA(10)
COMMON FAC
CALL INPUT (N, SIGMA,OMEGA,ALFA,BETA,FAC,SCALE)
D0 1 1=1,N
A=0.
B=2.*ALFA(I)
C=2.*(ALFA(I)*SIGMA (I)-BETA(I)*OMEGA(I))
D=1.
E=2.*SIGMA(I)
F=SIGMA (I)**2+0MEGA (I ) **2
WRITE(5,97)I
FORMAT(///10X’ ***%%%* POLE PAIR NO.‘I3° *kkkkx’//)
WRITE(5,204)
FORMAT(/” THE COEFFICIENTS BEFORE PADDING’)
WRITE(5,110)A,B,C,D,E,F
FORMAT(/’ A =’Ell.4° B ="Ell.4° C ="Ell.4/
‘D ='Ell.4° E ="El1.4° F ="Ell.4/)
CALL FIND(A,B,C,D,E,F,W1,G1,IND)
R1=0.
IF(Gl.NE.0.)R1=-1./G1
WRITE(5, 205)W1,R1
FORMAT(/° THE MINIMUM REAL PART OCCURS AT THE
(NORMALIZED) “/° FREQUENCY =‘E13.6/
THE NECESSARY PADDING IS =El13.6° OHMS’/)
WRITE(5,125)
FORMAT (/’ NEW COEFFICIENTS (AFTER PADDING)”)
WRITE(5,110)A,B,C,D,E,F
IF(IND.EQ.0)GOTO 51
IF(IND.EQ.-1)CALL TRYI(A,B,C,D,E,F)
IF(IND.EQ.1)CALL TRY2(A,B,C,D,E,F)
GOTO 1
CALL BRUNE(A,B,C,D,E,F)
CALL HELP(A,B,C,D,E,F,KQ)
IF(KQ.EQ.0)CALL ABOTT(A,B,C,D,E,F)
IF (KQ.EQ.1)CALL BBOTT(A,B,C,D,E,F)
1 CONTINUE
WRITE(5,185)
185 FORMAT(///° ENTER 1 FOR NEXT PROBLEM
1 OR ZERO TO STOP’/)
READ (5, *)KY
IF (KY.EQ.1)GOTO 987
STOP
END

SUBROUTINE FIND(A,B,C,D,E,F,W0,G0,IND)
LOGICAL BUG
V(X)=(W-X*U)/ (2. *D* (A-X*D))
BUG=.FALSE.

Z0=C/F

Z1=A/D

IF (BUG)WRITE(S5,11)Z0,21

FORMAT(’ 20 =°E13.5° Z1 =°El3.5)
Z=AMIN1 (20,21)
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IND=-1

WI -O.

IF(Z0.LE.Z1)GOTO 5

IND=1

Wl=1,E38

W=A*F+C*D-B*E

Um2, ADXF-E*E

Al=U*U=4 % (D*F ) *%2

Blm4  KAXDRFR*244 , XCRD %2 XF=2, *U*YW
Cl=W**2-4, XA XC*D*F
DEL=B1*Bl-4.*Al*C1
IF(DEL.LT.0.)STOP’ FIND: DELTA.LT.0 ?°
SQ=SQRT (DEL)

X1=(~B1-5Q) /2. /Al
X2=(-B1+8Q) /2. /Al

0l1=V(X1)

02=V(X2)
IF(BUG)WRITE(5,10)X1,X2,01,02
FORMAT(/’ X1 =°E13.5° X2 =°El13.5/° 01 =“El13.5° 02 =“El13.5)
IF(0l.LT.0..AND.02.LT.0. )GOTO 7
IF(01.LT.0.)X1=1.E38
IF(02.LT.0.)X2=1.E38
IF(X1.LT.X2)GOTO 3

GO=X2

WO=SQRT(02)

GOTO 2

GO=X1

WO=SQRT (01)

IF(GO.GE.Z)GOTO 7

IND=0

A=A-GO*D

B=B-GO*E

C=C-GO*F

RETURN

GO=Z

WO=W1

GOTO 1

END

SUBROUTINE HELP(A,B,C,D,E,F,KQ)

KQ=0

AF=A*F

Q1=SQRT (AF)

CD=C*D

Q2=SQRT (CD)

BE=B*E

Q3=SQRT (BE)

Q4=Q1-Q2

QQ=Q4**2-BE

IF(ABS(QQ).GT.1.E-4)STOP’ HELP: NOT A MINIMUM FUNCTION’
IF(Q4.LT.0.)KQ=1

RETURN
END
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SUBROUTINE ABOTT(A,B,C,D,E,F)
REAL M,L,L1,LN!,L2,LN2,LN
COMMON FAC
M=B*SQRT (D*F )+E*SQRT (A*C)
CX=SQRT (A*B/E/F)

L1=D /M*SQRT (D*F)
Cl=M/D/F*SQRT(A/C)

Rl=D/A 1
L2=M/A/C*SQRT(A/C)

R2=F/C

C2=A*C /M*SQRT(D /F)

L=D/C*SQRT (B*F/A/E)

CN=CX/FAC

LN1=L1/FAC

CN1=Cl/FAC

LN2=L2/FAC

CN2=C2 /FAC

LN=L /FAC

WRITE(S, 131)

FORMAT (/’ BOTT-DUFFIN-CASE(A)-UNMODIFIED’/)

WRITE(5,132)

FORMAT ( 7X’NORMALIZED’ 6X’FINAL’)
WRITE(5,100)CX,CN,L1,LN1,C1,CN1,R]l,R),R2,R2,
L2,LN2,C2,CN2,L,LN

FORMAT (

€0 =°2E13.5/° L}l ="2E13.5/° Cl =“2E13.5/° Rl =“2E13.5//
* R2 ="2E13.5/ L2 ="2E13.5/° €2 =“2E13.5/° LO ="2E13.5/)
R=F*SQRT (B*D )+E*SQRT (C*E)

CX=SQRT (A*B/E/F)

L1=R*D /M**2*SQRT (B#*D)

Cl=M*%2 /R/C/D*SQRT (A*C/B/F)

Rl=D/A

C2=A*C /R*SQRT(D*E/A/F)

R2=F/C

L=R/C/SQRT (C*E)

CN=CX /FAC

LN1=L1/FAC ]
CN1=Cl /FAC

CN2=C2 /FAC

LN=L/FAC

WRITE(S5,133)

FORMAT(/’ BOTT-DUFFIN-CASE(A)~MODIFIED(A)’/)
WRITE(5,132)
WRITE(5,101)CX,CN,L1,LN?,C1,CN1,C2,CN2,L,LN,R],R]1,R2,R2
FORMAT (

* CO =“2E13.5/° L1 =“2E13.5/° Cl1 =°2E13.5/° C2 ="2E13.5/
L0 =°2E13.5/’ Rl =“2E13.5/’ R2 ="2E13.5/)
Q=A*SQRT (C*E )+B*SQRT (B*D)

CX=SQRT (A*B/E/F)

CN=CX /FAC

Rls=D/A

Cl=Q/C/D*SQRT(A*C/B/F)

CN1=Cl/FAC

L2=M**2/Q/C/SQRT (E*C)

Pl
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LN2=L2/FAC

L=D/Q*SQRT (B*D)

LN=L/FAC

R2=F/C

WRITE(5,134)

FORMAT(/° BOTT-DUFFIN-CASE(A)-MODIFIED(B)‘/)
WRITE(5,132)
WRITE(5,102)CX,CN,C1,CN1,L2,LN2,C2,CN2,L,LN,R1,R1,R2,R2
FORMAT (

° CO0 =°2E13.5/° Cl1 =“2E13.5/° L2 =“2E13.5/° C2 =’2E13.5/
’ L0 =“2E13.5/° Rl ="2E13.5/° R2 =“2E13.5/)
CX=SQRT (A*B/E/F)

CN=CX/FAC

R1=D/A

C1l=Q**2*SQRT (A/C)/(M*B*D)

CN1=C1/FAC

L1=M*B*D / (C*Q*SQRT (A*E))

LN1=L1/FAC

L=D/Q*SQRT (B*D)

LN=L /FAC

L2=M*SQRT (A/C) /(A*C)

LN2=L2/FAC

C2=A*C*SQRT (D /F) M

CN2=C2 /FAC

R2=F/C

WRITE(5,152)

FORMAT (/’ DARLINGTON=CASE(A)’/)

WRITE(5,132)
WRITE(S5,100)CX,CN,L1,LN1,C1,CN1,R],R]1,R2,R2,
L2,LN2,C2,CN2,L,LN

RETURN

END

SUBROUTINE BRUNE(A,B,C,D,E,F)
REAL LA,LB,M,LNA,LNB,MN

COMMON FAC

LA=D/B

LNA=LA/FAC

LB=A%F/B/C

LNB=LB /FAC

M=A /B*SQRT (D*F /A /C)

MN=M /FAC

CX=B/F

CN=CX/FAC

R=F/C

WRITE(5,135)

FORMAT (/* BRUNE NETWORK’/)
WRITE(5,132)

FORMAT (7X°NORMALIZED“6X FINAL ‘)
WRITE(5,105)LA,LNA,LB,LNB,M,MN, CX,CN,R,R
FORMAT(

’ LA -'2E13-5/‘ LB -’2E1305/’ M -'2E1305/
‘ CO -'2E1305/' R -’2E13.5/)
RETURN
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END

SUBROUTINE TRY!(A,B,C,D,E,F)

REAL L1,LNL

COMMON FAC

IF (ABS(C).GT.1.E-8)STOP’ TRY l: C.NE.O ?’
Q=BXE-A*F

IF(Q.LT.0.)STOP° TRY 1: BE-AF .LT. ZERO 7
IF(Q/B**2.GT.D/A)GOTO 7

Cl=B/F

CN1=Cl/FAC

R1l=Q/B%**2

L1=D/B-A*R1/B

LN1l=L1/FAC

R2=B*L1/A

WRITE(5,107)

107 FORMAT (/’ LADDER NETWORK 1-A (ZERO AT 2ER0)‘/)
WRITE(5,132)

132 FORMAT ( 7X°NORMALIZED’6X’FINAL’)
WRITE(5,120)Cl1,CN1,R1,R1,L1,LN1,R2,R2

120 FORMAT(’ Cl =°2E13.5/° Rl =“2E13.5/° L1 ="2E13.5/

1 “ R2 =°2E13.5/)
RETURN

7 Cl=B/F
CN1=Cl/FAC
R1=D/A
C2=mA%*%2%B / (A*Q~B**2*D)

CN2=C2 /FAC
R2=Q/B**2-D /A
WRITE(5,137)

‘137 FORMAT(/” LADDER NETWORK 1-B (ZERO AT ZERO)’/)
WRITE(5,132)
WRITE(5,121)Cl,CN1,R1,R1,C2,CN2,R2,R2

121 FORMAT(’ Cl1 =°2E13.5/’ Rl =“2E13.5/° C2 =‘2E13.5/

1 ’ R2 =°2E13.5/)
RETURN
END

SUBROUTINE INPUT (N, SIGMA,OMEGA,ALFA,BETA,FAC,SCALE)
REAL ALFA(10),BETA(10),SIGMA(10),0MEGA(10)
WRITE(S, 200)
200 FORMAT(//° GIVE N - THE NUMBER OF CONJUGATE
1 POLE PAIRS’/)
READ (5, *)N
WRITE(5,201)
201 FORMAT(’ GIVE THE POLES AND THE RESIDUES’/
1 =REAL + j IMAG +4REAL + j IMAG"/)
DO 37 I=1,N -
37 READ (5, *)SIGMA(I),OMEGA(I),ALFA(I),BETA(I)
WRITE(5,203)
203 FORMAT(/° GIVE THE NORMALIZATION’/)
READ (5, *)FAC .
RETURN
END
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SUBROUTINE TRY2(A,B,C,D,E,F)

KEAL L1,LN1,L2,LN2

COMMON FAC

IF(ABS(A).GT.1.E=8)STOP’ TRY 2: A.NE.ZERO ?°
Q=B*E=C*D

IF(Q.LT.0.)STOP’ TRY 2: BE-CD .LT. ZERO ?’
IF(Q/B**2.GT.F/C)GOTO 17

Ll=D/B

LN1=L1/FAC

R1=Q/B%*%2

Cl=B#*3/(B**2%F-Q*C)

CN1=C1 /FAC

R2=F /C-Q/B**2

WRITE(5,108)

FORMAT(/‘ LADDER NETWORK 2-A (ZERO AT INFINITY)’/)
WRITE(5,132)

FORMAT (7X°NORMALIZED’6X’FINAL®)
WRITE(5,120)C1,CN1,R1,R1,L1,LN1,R2,R2

FORMAT(’ Cl =°2E13.5/° Rl =°2E13.5/° L1 =°2E13.5/
’ R2 =°2E13.5/)

RETURN

L1=D/B

LN1=L1/FAC

RlsF/C

L2=(Q*C-B**2*F) / (B*C**2)

LN2=L2/FAC

R2=Q/B**2-~F/C

WRITE(5,138)

FORMAT(/° LADDER NETWORK 2-B (ZERO AT INFINITY)’/)
WRITE(5,132)
WRITE(5,123)L1,LNl,R1,R1,L2,LN2,R2,R2

FORMAT(” L1 ="2E13.5/° Rl =°2E13.5/’ L2 =°2E13.5/
’ R2 =’2E13.5/)

RETURN

END

SUBROUTINE BBOTT(A,B,C,D,E,F)
REAL M,L,LN,L1,LN1,L2,LN2
COMMON FAC
M=B*SQRT (D*F )+E*SQRT (A*C)
CX=A/F*SQRT(C*E/B/D)
CN=CX/FAC
L1=M/A/C*SQRT(D/F)
LN1=L1/FAC

Cl=A/M*SQRT (A*C)

CN1=Cl /FAC

R1=D/A

C2=M/F /SQRT (D*F)
CN2=C2/FAC

L2=D*F /M*SQRT (A/C)
LN2=L2/FAC

R2=F/C

L=SQRT(D*E/B/C)
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LN=L /FAC

WRITE(S5,231)

FORMAT (/° BOTT-DUFFIN CASE(B)-UNMODIFIED’/)
WRITE(5,132)

FORMAT ( 7X°NORMALIZED’6X FINAL")

WRITE(S, 200)CX,CN,L1,LN1,C1,CN1,R],RI1,
c2,CN2,L2,LN2,R2,R2,L,LN

FORMAT (

* CO =“2E13.5/° L1 =“2E13.5/° Cl =“2E13.5/° Rl ="2E13.5//
© c2 =*2E13.5/° L2 ="2E13.5/° R2 =“2E13.5/° LO =’2E13.5/)
Q=D*SQRT (B*F )+E*SQRT (A*E)

CX=A/Q*SQRT (A*E)

CN=CX/FAC

Rl=D/A

L1=Q/A/C*SQRT (C*D/E/F)

LN1=L1/FAC

R2=F/C

C2=M**2/Q/F/SQRT (B*F)

CN2=C2 /FAC

L2=Q*A*F /M**2*SQRT(B*D/A/C)

LN2=L2/FAC

L=SQRT (D*E/B/C)

LN=L /FAC

WRITE(5,233)

FORMAT(/° BOTT-DUFFIN-CASE (B)~MODIFIED(A) /)
WRITE(5,132)

WRITE (5, 201)CX,CN,R1,R1,L1,LN1,R2,R2,
c2,CN2,L2,LN2,L,LN

FORMAT(

° €0 =’2E13.5/° Rl =°2E13.5/° L1 =“2E13.5/° R2 ="2E13.5/
* C2 =’2E13.5/° L2 ="2E13.5/° LO ="2E13.5/)
R=C*SQRT (A*E )+B*SQRT (B*F)

CX=R /F/SQRT (B*F)

CN=CX/FAC

L2=A*F/R*SQRT (B*D /A/C)

LN2=L2/FAC

L1=M**2 /R/A/C*SQRT(C*D/E/F)

LN1=L1/FAC

Cl=R*A/MA*24SQRT (A%E)

CN1=Cl/FAC

R1=D/A

R2=F/C

L=SQRT (D*E/B/C)

LN=L /FAC

WRITE(S,234)

FORMAT (/° BOTT-DUFFIN~CASE(B)-MODIFIED(B)"/)
WRITE(S5,132)
WRITE(5,202)CX,CN,L2,LN2,L1,LN],C],CNl,
R1,R1,R2,R2,L,LN

FORMAT (

* €O =°*2E13.5/° L2 =°2E13.5/° L1 ="2E13.5/° C1 =°2E13.5/
* Rl =°2E13.5/° R2 =°2E13.5/° LO ="2E13.5/)
CX=R /F/SQRT (B*F)

CN=CX /FAC
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L2=M*B*F*SQRT (A/C) /R**2
LN2=L2 /FAC
L1=M*SQRT (D /F) /A/C
LN1=L1/FAC
C2=R*A*SQRT (C*E) /M/B/F
CN2=C1/FAC
R1~D/A !
R2=F/C :
L=SQRT (D*E/B/C)
LN=L/FAC
C1l=A*SQRT (A*C) M
CN1=Cl /FAC
WRITE(5,252)

252 FORMAT (/‘ DARLINGTON~CASE(BO’/)
WRITE(5,132)
wRITE(5,200)CX,CN,L1,LN1,C1,CN1,Rl,R],

1 C2,CN2,L2,LN2,R2,R2,L,LN

RETURN
END

A i
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ex granit.for
LINK: Loading
(LNKXCT GRANIT Execution]

GIVE N - THE NUMBER OF CONJUGATE POLE PAIRS

GIVE THE POLES AND THE RESIDUES
-REAL + j IMAG +REAL + j IMAG

.08427 .9158 .11l12e-2 .312le-3
01473 20870 .13192-2 -33013-3

GIVE THE NORMALIZATION

9.4248e6

*%kkkx POLE PAIR NO. 1 *kk&s

THE COEFFICIENTS BEFORE PADDING

A = 0.0000E4+00 B = 0.2224E~02 C =-0.3842E~03
D = 0.1000E+01 E = 0.1685E+00 F = 0.8458E+00

THE MINIMUM REAL PART OCCURS AT THE (NORMALIZED)
FREQUENCY = 0.000000E+00
'HE NECESSARY PADDING IS = 0.220129E+04  OHMS
NEW COEFFICIENTS (AFTER PADDING)
A = 0.4543E-03 B = 0.2301E-02 C = 0.0000E+00
D = 0.1000E+01 E = 0.1685E+00 F = 0.8458E+00

LADDER NETWORK 1-A (ZERO AT ZERO)

NORMALIZED FINAL
Cl = 0.27200E-02 0.28860E-09
Rl = 0.66342E+00 0.66342E+00
Ll = 0.43454E+03 0.46107E-04

0.22006E+04 0.22006E+04

R2




|
|
1
1
!
I
!
I

THE COEFFICIENTS BEFORE PADDING

A = 0.0000E+00 B = 0.2638E~02 C =-0.1506E-02
D = 0.1000E+01 E = 0.2946E+00 F = 0.8259E+01

THE MINIMUM REAL PART OCCURS AT THE (NORMALIZED)
FREQUENCY = 0.159812E+01

*%%kk* POLE PAIR NO.

2 kddkdedk

THE NECESSARY PADDING IS = 0.495870E+04  OHMS

NEW COEFFICIENTS (AFTER PADDING)

A = 0.2017E-03 B = 0.2697E-02 C = 0.1593E-03
D = 0.1000E+01 E

LA
LB

co

BRUNE NETWORK

NORMALIZED

0.37073E+03
0.38764E+04
0.11988E+04
0.32662E~03
0.51850E+05

FINAL
0.39335E~-04
0.41130E-03
0.12720E-03
0.34655E-10
0.51850E+05

BOTT-DUFFIN-CASE (A)-UNMODIFIED

co
L1
Cl
R1

R2
L2
c2
LO

NORMALIZED

0.47285E-03
0.36822E+03
0.10634E-02
0.49587E+04

0.51850E+05
0.27340E+06
0.14322E-05
0.12157E+06

FINAL
0.50170E-10
0.39069E-04
0.11283E-09
0.49587E+04

0.51850E+05
0.29008E-01
0.15196E-12
0.12899E-01

= 0.2946E+00 F = 0.8259E+01




BOTT-DUFFIN-CASE(A)-MODIFIED (A)

co
Ll
Cl
c2
LO
R1
R2

BOTT-DUFFIN~CASE (A)-MODIFIED(B)

NORMALIZED
c0 = 0.47285E-03
Cl = 0.10666E-02
L2 = 0.39460E+06
€2 = 0.99133E~-06
L0 = 0.36711E+03
Rl = 0.49587E+04
R2 = 0.51850E+05
DARLINGTON-CASE(A)

NORMALIZED
CO = 0.47285E-03
L1 = 0.12121E+06
Cl = 0.10698E-02
Rl = 0.49587E+04
R2 = 0.51850E+05
L2 = 0.27340E+06
c2 = 0.14322E-05
10 = 0.36711E+03

ENTER 1 FOR NEXT PROBLEM OR ZERO TO STOP

0

STOP

NORMALIZED
0.47285E~03
0.36745E+03
0.10656E-02
0.99133E-06
0.39497E+06
0.4958 7TE+04
0.51850E+05

END OF EXECUTION
CPU TIME: 0.38 ELAPSED TIME: 3:15.70
Z¥IT

FINAL
0.50170E-10
0.38987E-04
0.11306E-09
0.10518E-12
0.41908E-01
0.49587E+04
0.51850E+05

FINAL
0.50170E-10
0.11317E-09
0.41869E-01
0.10518E-12
0.38951E~04
0.49587E+04
0.51850E+05

FINAL
0.50170E-10

0.12860E-01
0.11351E-09

0.49587E+04

0.51850E+05
0.29008E-01
0.15196E~12
0.38951E=04

L

£ L=
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